Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
Knee Surg Relat Res ; 36(1): 16, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566175

RESUMO

BACKGROUND: Windswept deformity (WSD) in relation to advanced osteoarthritis (OA) presents a significant surgical challenge in total knee arthroplasty (TKA). The primary goal of this study is to investigate the Prevalance of WSD associated osteoarthritis who have undergone total knee arthroplasty. The secondary goal is to explore the causes of WSD and its association with spinal deformity or leg length discrepancy in these patients. Finally, we evaluate the surgical outcomes of phenotype-considered kinematically aligned TKA (KA-TKA) in treating patients with WSD. METHODS: A review was conducted on data from 40 knees of 33 WSD patients who underwent phenotype-considered KA-TKA from August 2016 to December 2020. Patient demographics, associated diseases, preoperative and postoperative knee alignment angles, range of motion (ROM), Oxford Knee Score (OKS), and Knee Society Score (KSS) were collected and analyzed. Subgroup analysis for comparing the results between valgus and varus knees were also performed. RESULTS: Within the studied cohort of WSD patients, a substantial 64% displayed concomitant coronal spinal imbalance and 21% evidenced leg length discrepancy. Postoperative improvements were notable in knee alignments, ROM, OKS, and KSS following the application of the phenotype-considered KA-TKA approach. There were significant differences in the knee alignment angles, including mHKA, LDFA, and MPTA, between the valgus and varus side of knees (P = 0.018). However, no statistically significant difference were observed in the functional scores, comprising ROM, OKS, and KSS, between valgus and varus knees. CONCLUSIONS: A high percentage of patients with WSD exhibited coronal spinal imbalance and leg length discrepancy. Phenotype-considered KA-TKA effectively provided alignment targets for the treatment of both varus and valgus knees in patients with WSD, achieving excellent short-term outcomes and acceptable knee alignment.

2.
Huan Jing Ke Xue ; 45(5): 2686-2693, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629532

RESUMO

Riparian soil is a critical area of watersheds. The characteristics of biological contaminants in riparian soil affect the pollution control of the watershed water environment. Thus, the microbial community structure, antibiotic resistance genes (ARGs), and mobile genetic elements (MGEs) in the riparian soil of the Lanzhou section of the Yellow River were investigated by analyzing the characteristics of soil samples collected from farmland, mountains, and industrial land. The results showed that the Proteobacteria, Bacteroidetes, and Actinobacteria were the dominant phyla in the riparian soil of Lanzhou section of the Yellow River. The microbial structure in the riparian soil was significantly correlated with the land use type (P < 0.05). The α diversity index of bacterial communities in land types was in the order of farmland > mountain > industry. Sulfonamide-typed ARGs were the most dominant genes in the soil of the Lanzhou section of the Yellow River Basin, among which the sul1 gene had the highest abundance, 20-36 000 times that of other detected ARGs. Moreover, the total absolute abundance of ARGs in industrial soil was the highest. Principal coordinate analysis (PCoA) displayed that the ARGs characteristics had a significant correlation with land types (P < 0.05), and intl1 and tnpA-04 drove the diffuseness of sulfonamide and tetracycline ARGs, respectively. Redundancy analysis (RDA) demonstrated that the content of inorganic salt ions and total phosphorus in the soil of the riparian zone of the Yellow River Lanzhou section were the main environmental factors, modifying the distribution of the microbial structure. Halobacterota and Acidobacteriota were the main microflora that drove the structural change in ARGs.


Assuntos
Antibacterianos , Solo , Antibacterianos/análise , Solo/química , Genes Bacterianos , Rios/química , Bactérias/genética , Sulfanilamida/análise , Resistência Microbiana a Medicamentos/genética
3.
J Hazard Mater ; 471: 134280, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38636233

RESUMO

Earthworms play a pivotal role in the elimination of fecal coliforms during vermicomposting of fruit and vegetable waste (FVWs). However, the specific mechanisms underlying the action of earthworm mucus remain unclear. This study investigated the mechanisms of fecal coliform reduction related to earthworm mucus during FVWs vermicomposting by comparing treatments with and without earthworms. The results show that the secretion of earthworm mucus decreased by 13.93 % during the startup phase, but significantly (P < 0.001) increased by 57.80 % during the degradation phase. Compared to the control without earthworms, vermicomposting led to a significant (P < 0.05) 1.22 -fold increase in the population of active bacteria, with a strong positive correlation between mucus characteristics and dominant bacterial phyla. As the dominant fecal coliforms, Escherichia coli and Klebsiella pneumoniae significantly (P < 0.05) declined by 86.20 % and 93.38 %, respectively, in the vermi-reactor relative to the control. Bacterial dispersal limitation served as a key factor constraining the elimination of E. coli (r = 0.73, P < 0.01) and K. pneumoniae (r = 0.77, P < 0.001) during vermicomposting. This study suggests that earthworm mucus increases the active bacterial abundance and cooperation by weakening the bacterial dispersal limitation, thus intensifying competition and antagonism between fecal coliforms and other bacteria.

4.
IEEE Trans Vis Comput Graph ; 30(5): 2444-2453, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38437083

RESUMO

Virtual Reality (VR) offers an immersive 3D digital environment, but enabling natural walking sensations without the constraints of physical space remains a technological challenge. Previous VR locomotion methods, including game controller, teleportation, treadmills, walking-in-place, and redirected walking (RDW), have made strides towards overcoming this challenge. However, these methods also face limitations such as possible unnaturalness, additional hardware requirements, or motion sickness risks. This paper introduces "Spatial Contraction (SC)", an innovative VR locomotion method inspired by the phenomenon of Lorentz contraction in Special Relativity. Similar to the Lorentz contraction, our SC contracts the virtual space along the user's velocity direction in response to velocity variation. The virtual space contracts more when the user's speed is high, whereas minimal or no contraction happens at low speeds. We provide a virtual space transformation method for spatial contraction and optimize the user experience in smoothness and stability. Through SC, VR users can effectively traverse a longer virtual distance with a shorter physical walking. Different from locomotion gains, the spatial contraction effect is observable by the user and aligns with their intentions, so there is no inconsistency between the user's proprioception and visual perception. SC is a general locomotion method that has no special requirements for VR scenes. The experimental results of our live user studies in various virtual scenarios demonstrate that SC has a significant effect in reducing both the number of resets and the physical walking distance users need to cover. Furthermore, experiments have also demonstrated that SC has the potential for integration with existing locomotion techniques such as RDW.

5.
J Exp Bot ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457346

RESUMO

The legume-rhizobium symbiosis represents as a unique model within the realm of plant-microbe interactions. Unlike typical cases of pathogenic invasion, the infection of rhizobia and their residence within symbiotic cells do not elicit a noticeable immune response in plants. Nevertheless, there is still much to uncover regarding the mechanisms through which plant immunity influences rhizobia symbiosis. In this study, we identify an important player in this intricate interplay: the Lotus japonicus PRP1, which serves as a positive regulator of plant immunity but also exhibits the capacity to decrease rhizobial colonization and nitrogen fixation within nodules. The PRP1 gene encodes an uncharacterized protein and is named as Pathogenesis-Related Protein1, owing to its ortholog in Arabidopsis thaliana, a pathogenesis-related family protein (At1g78780). The PRP1 gene displays high expression levels in nodules compared to other tissues. We observed an increase in rhizobium infection in the L. japonicus prp1 mutants, while PRP1-overexpressing plants exhibited a reduction in rhizobium infection compared to control plants. Intriguingly, L. japonicus prp1 mutants produced nodules with a pinker color compared to wild-type controls, accompanied by elevated levels of leghemoglobin and an increased proportion of infected cells within the prp1 nodules. The Nodule Inception (NIN) could directly bind to the PRP1 promoter, activating PRP1 gene expression. Furthermore, we found that PRP1 is a positive mediator of innate immunity in plants. In summary, our study provides clear evidence of the intricate relationship between plant immunity and symbiosis. PRP1, acting as a positive regulator of plant immunity, simultaneously exerts suppressive effects on rhizobial infection and colonization within nodules.

6.
Health Data Sci ; 4: 0113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38486623

RESUMO

Background: In real-world drug discovery, human experts typically grasp molecular knowledge of drugs and proteins from multimodal sources including molecular structures, structured knowledge from knowledge bases, and unstructured knowledge from biomedical literature. Existing multimodal approaches in AI drug discovery integrate either structured or unstructured knowledge independently, which compromises the holistic understanding of biomolecules. Besides, they fail to address the missing modality problem, where multimodal information is missing for novel drugs and proteins. Methods: In this work, we present KEDD, a unified, end-to-end deep learning framework that jointly incorporates both structured and unstructured knowledge for vast AI drug discovery tasks. The framework first incorporates independent representation learning models to extract the underlying characteristics from each modality. Then, it applies a feature fusion technique to calculate the prediction results. To mitigate the missing modality problem, we leverage sparse attention and a modality masking technique to reconstruct the missing features based on top relevant molecules. Results: Benefiting from structured and unstructured knowledge, our framework achieves a deeper understanding of biomolecules. KEDD outperforms state-of-the-art models by an average of 5.2% on drug-target interaction prediction, 2.6% on drug property prediction, 1.2% on drug-drug interaction prediction, and 4.1% on protein-protein interaction prediction. Through qualitative analysis, we reveal KEDD's promising potential in assisting real-world applications. Conclusions: By incorporating biomolecular expertise from multimodal knowledge, KEDD bears promise in accelerating drug discovery.

7.
Theranostics ; 14(3): 1260-1288, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38323309

RESUMO

Gene therapy holds promise for patients with inherited monogenic disorders, cancer, and rare genetic diseases. Naturally occurring adeno-associated virus (AAV) offers a well-suited vehicle for clinical gene transfer due to its lack of significant clinical pathogenicity and amenability to be engineered to deliver therapeutic transgenes in a variety of cell types for long-term sustained expression. AAV has been bioengineered to produce recombinant AAV (rAAV) vectors for many gene therapies that are approved or in late-stage development. However, ongoing challenges hamper wider use of rAAV vector-mediated therapies. These include immunity against rAAV vectors, limited transgene packaging capacity, sub-optimal tissue transduction, potential risks of insertional mutagenesis and vector shedding. This review focuses on aspects of immunity against rAAV, mediated by anti-AAV neutralizing antibodies (NAbs) arising after natural exposure to AAVs or after rAAV vector administration. We provide an in-depth analysis of factors determining AAV seroprevalence and examine clinical approaches to managing anti-AAV NAbs pre- and post-vector administration. Methodologies used to quantify anti-AAV NAb levels and strategies to overcome pre-existing AAV immunity are also discussed. The broad adoption of rAAV vector-mediated gene therapies will require wider clinical appreciation of their current limitations and further research to mitigate their impact.


Assuntos
Anticorpos Neutralizantes , Vetores Genéticos , Humanos , Estudos Soroepidemiológicos , Transgenes , Terapia Genética , Dependovirus/genética
8.
Small ; 20(4): e2306144, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37715327

RESUMO

Electron-donating/-withdrawing groups (EDGs/EWGs) substitution is widely used to regulate the catalytic performance of transition-metal phthalocyanine (MPc) toward electrochemical CO2 reduction, but the corresponding structure-activity relationships and regulation mechanisms are still ambiguous. Herein, by investigating a series of substitution-functionalized MPc (MPc-X), this work reveals a double-volcano-like relationship between the electron-donating/-withdrawing abilities of the substituents and the catalytic activities of MPc-X. The weak-EDG/-EWG substitution enhances whereas the strong-EDG/-EWG substitution mostly lowers the CO selectivity of MPc. Experimental and calculation results demonstrate that the electronic properties of the substituents influence the symmetry and energy of the highest occupied molecular orbitals of MPc-X, which in turn determine the CO2 adsorption/activation and lead to diverse CO2 reduction pathways on the EWG or EDG substituted MPc via different CO2 adsorption modes. This work provides mechanism insights that could be guidance for the design and regulation of molecular catalysts.

9.
Cell Prolif ; 57(1): e13522, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37340715

RESUMO

Our previous finding revealed that the Wnt10b RNA expression of osteoporotic adipose-derived stem cells (OP-ASCs) with impaired osteogenic capacity was significantly reduced than that of ASCs. There are no ideas that the relationship between the OP-ASCs' impaired osteogenic potential and Wnt10b expression. This study aimed to indicate the potential molecular mechanisms and functional role of Wnt10b in OP-ASCs, as well as to investigate a potential application to reverse the OP-ASCs' impaired osteogenic differentiation potential. The OP-ASCs and ASCs were harvested from the inguinal fat of osteoporosis (OP) mice with bilateral ovariectomy (OVX) and normal mice. qPCR and WB were used to detect the different levels of the expression of the Wnt10b RNA in both OP-ASCs and ASCs. Lentiviral-mediated regulation of Wnt10b expression was employed for OP-ASCs, and the detection of the expression levels of key molecules in the Wnt signalling pathway and key osteogenic factors was performed through qPCR and WB in vitro experiments. The capacity of OP-ASCs to osteogenesis was determined using alizarin red staining. Lastly, the repair effect of the BCP scaffolds incorporating modified OP-ASCs on the critical-sized calvarial defects (CSCDs) in OP mice was scanned and detected by micro-computed tomography, haematoxylin and eosin staining, Masson's trichrome staining and immunohistochemistry. First, we discovered that both the RNA and protein expression levels of Wnt10b were significantly lower in OP-ASCs than that in ASCs. In vitro experiments, upregulation of Wnt10b could activate the Wnt signalling pathway, and increase expression of ß-catenin, Lef1, Runx2 and osteopontin (Opn), thereby enhancing the osteogenic ability of OP-ASCs. In addition, the OP-ASCs with Wnt10b-overexpressing could promote the repair of CSCD in osteoporotic mice with increasing new bone volume, bone mineral density, and increased expression of Opn in new bone in vivo. Taken together, overexpression of Wnt10b could partially facilitate the differentiation of OP-ASCs towards osteogenesis and accelerated the healing of bone defects by activating the Wnt/ß-catenin signalling pathway in vitro and in vivo experiments. This study confirmed the important role of Wnt10b in regulating the osteogenic differentiation capability of OP-ASCs and indicated Wnt10b could be a potential therapeutic target for reversing the impaired osteogenic capabilities of OP-ASCs to therapy bone defects of OP patients.


Assuntos
Osteogênese , Osteoporose , Feminino , Humanos , Animais , Camundongos , beta Catenina/metabolismo , Microtomografia por Raio-X , Osteoporose/metabolismo , Diferenciação Celular/fisiologia , Via de Sinalização Wnt , Células-Tronco , RNA , Células Cultivadas , Proteínas Wnt
10.
Environ Sci Pollut Res Int ; 31(2): 3195-3206, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38085475

RESUMO

River is a unique source of drinking water in valley-type cities, affecting local urban development and human lifestyles. However, the key driving factors for dissemination of antibiotic-resistant genes (ARGs) in valley-type urban environments remain unclear. This study aimed to investigate the distribution of ARGs in the Yellow River and to clarify the driving factors of ARGs in a typical valley basin city (Lanzhou, China). The seven selected ARGs with higher abundances including tetracycline resistance genes (tetM, tetX), macrolide resistance genes (ermB, ermF, ereA), and sulfonamide resistance genes (sul1, sul2) were detected. The results showed that the total absolute abundance of all the selected ARGs varied from 9.97 × 1012 to 1.04 × 1015 copies/L in the water body, with higher abundances in the wet season, relative to the dry season. Among these, sulfonamide resistance genes (sul1, sul2) displayed the highest absolute abundance in the river and soil. The ARGs and mobile genetic elements (MGEs) were significantly correlated with bacterial abundance, dissolved organic carbon (DOC), ammonia nitrogen (NH4+), and total nitrogen (TN) levels in the water environment (Mantel test, P < 0.01). Structural equation modeling revealed the direct input of point-source and nonpoint-source ARGs in this area contributed less to the overall level of the ARGs in the water. Among the multiple drivers, the MGEs derived from wastewater treatment plant and anthropogenic nonpoint area positively and directly affected the ARG profiles in water (P < 0.01), rather than the factors of bacterial abundance and physicochemical properties. According to this study, the exogenous MGEs from anthropogenic activities are the main driver for the enrichment of ARGs in the valley-type urban river environment.


Assuntos
Antibacterianos , Água Potável , Humanos , Antibacterianos/farmacologia , Antibacterianos/análise , Cidades , Rios/química , Integrons , Genes Bacterianos , Farmacorresistência Bacteriana/genética , Macrolídeos , Bactérias/genética , Sulfonamidas/análise , Nitrogênio , China
11.
Medicina (Kaunas) ; 59(12)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38138240

RESUMO

Background and Objectives: Adequate pain management during early rehabilitation is mandatory for improving the outcomes of patients undergoing total knee arthroplasty (TKA). Conventional pain management, mainly comprising opioids and epidural analgesia, may result in certain adverse effects such as dizziness, nausea, and motor blockade. We proposed a multimodal analgesic (MA) strategy involving the use of peripheral nerve block (NB), periarticular injection (PAI), and intravenous patient-controlled analgesia (IVPCA). This study compared the clinical efficacy and adverse effects of the proposed MA strategy and patient-controlled epidural analgesia (PCEA). Materials and Methods: We enrolled 118 patients who underwent TKA under spinal anesthesia. The patients followed either the MA protocol or received PCEA after surgery. The analgesic effect was examined using a numerical rating scale (NRS). The adverse effects experienced by the patients were recorded. Results: A lower proportion of patients in the MA group experienced motor blockade (6.45% vs. 22.98%) compared to those in the PCEA group on the first postoperative day. Furthermore, a lower proportion of patients in the MA group experienced numbness (18.52% vs. 43.33%) than those in the PCEA group on the first postoperative day. Conclusions: The MA strategy can be recommended for reducing the occurrence of motor blockade and numbness in patients following TKA. Therefore, the MA strategy ensures early rehabilitation while maintaining adequate pain relief.


Assuntos
Analgesia Epidural , Artroplastia do Joelho , Humanos , Manejo da Dor , Analgesia Controlada pelo Paciente/efeitos adversos , Analgesia Controlada pelo Paciente/métodos , Artroplastia do Joelho/efeitos adversos , Analgesia Epidural/métodos , Estudos Retrospectivos , Dor Pós-Operatória/tratamento farmacológico , Dor Pós-Operatória/etiologia , Hipestesia/etiologia , Resultado do Tratamento , Analgésicos/uso terapêutico
12.
Nat Commun ; 14(1): 7571, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989738

RESUMO

Cis-peptide bonds are rare in proteins, and building blocks less favorable to the trans-conformer have been considered destabilizing. Although proline tolerates the cis-conformer modestly among all amino acids, for collagen, the most prevalent proline-abundant protein, all peptide bonds must be trans to form its hallmark triple-helix structure. Here, using host-guest collagen mimetic peptides (CMPs), we discover that surprisingly, even the cis-enforcing peptoid residues (N-substituted glycines) form stable triple-helices. Our interrogations establish that these peptoid residues entropically stabilize the triple-helix by pre-organizing individual peptides into a polyproline-II helix. Moreover, noting that the cis-demanding peptoid residues drastically reduce the folding rate, we design a CMP whose triple-helix formation can be controlled by peptoid cis-trans isomerization, enabling direct targeting of fibrotic remodeling in myocardial infarction in vivo. These findings elucidate the principles of peptoid cis-trans isomerization in protein folding and showcase the exploitation of cis-amide-favoring residues in building programmable and functional peptidomimetics.


Assuntos
Peptoides , Peptoides/química , Isomerismo , Peptídeos/química , Colágeno/química , Prolina/metabolismo
13.
PLoS One ; 18(11): e0293503, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37992053

RESUMO

Since 72% of rare diseases are genetic in origin and mostly paediatrics, genetic newborn screening represents a diagnostic "window of opportunity". Therefore, many gNBS initiatives started in different European countries. Screen4Care is a research project, which resulted of a joint effort between the European Union Commission and the European Federation of Pharmaceutical Industries and Associations. It focuses on genetic newborn screening and artificial intelligence-based tools which will be applied to a large European population of about 25.000 infants. The neonatal screening strategy will be based on targeted sequencing, while whole genome sequencing will be offered to all enrolled infants who may show early symptoms but have resulted negative at the targeted sequencing-based newborn screening. We will leverage artificial intelligence-based algorithms to identify patients using Electronic Health Records (EHR) and to build a repository "symptom checkers" for patients and healthcare providers. S4C will design an equitable, ethical, and sustainable framework for genetic newborn screening and new digital tools, corroborated by a large workout where legal, ethical, and social complexities will be addressed with the intent of making the framework highly and flexibly translatable into the diverse European health systems.


Assuntos
Triagem Neonatal , Doenças Raras , Recém-Nascido , Humanos , Criança , Triagem Neonatal/métodos , Doenças Raras/diagnóstico , Doenças Raras/epidemiologia , Doenças Raras/genética , Inteligência Artificial , Tecnologia Digital , Europa (Continente)
14.
Math Biosci Eng ; 20(8): 14353-14376, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37679139

RESUMO

With breakthroughs in the power electronics industry, the stability and rapid power regulation of wind power generation have been improved. Its power generation technology is becoming more and more mature. However, there are still weaknesses in the operation and control of power systems under the influence of extreme weather events, especially in real-time power dispatch. To optimally distribute the power of the regulation resources in a more stable manner, a wind energy forecasting-based power dispatch model with time-control intervals optimization is proposed. In this model, the outage of the wind energy under extreme weather is analyzed by an autoregressive integrated moving average model (ARIMA). Additionally, the other regulation resources are used to balance the corresponding wind power drop and power mismatch. Meanwhile, an algorithm names weighted mean of vectors (INFO) is employed to solve the real-time power dispatch and minimize the power deviation between the power command and real output. Lastly, the performance of the proposed optimal real-time power dispatch is executed in a simulation model with ten regulation resources. The simulation tests show that the combination of ARIMA and INFO can effectively improve the power control performance of the PD-WEF system.

15.
Front Surg ; 10: 1227056, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37732163

RESUMO

The principal benefit of employing percutaneous vertebroplasty (PVP) for managing osteoporotic vertebral compression fractures lies in its capacity to facilitate early mobilization in elderly patients, thereby effectively avoiding the potential catastrophic complications associated with prolonged bedridden states. However, bone cement leakage, as the most common complication of PVP, may have fatal consequences. Here, we report a case involving an 85-year-old male patient with L1 vertebral compression fracture who underwent PVP at our hospital and was discharged on the same day of the surgical intervention. Subsequently, the patient experienced symptoms of chest tightness and palpitations. Cardiac ultrasound examination revealed pericardial effusion, while pulmonary computed tomographic angiography (CTA) demonstrated a strip high-density shadow in the right ventricular area. Finally, it was determined that the perforation of the right ventricular wall was caused by bone cement embolism. Through this comprehensive case report, we aim to deepen the understanding of orthopedic doctors on the importance of preventing bone cement leakage.

16.
J Cardiovasc Med (Hagerstown) ; 24(12): 853-863, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37724483

RESUMO

AIM: The aim of this study was to evaluate the accuracy of the diagnostic criteria for determining the origin of outflow tract ventricular arrhythmia (OTVA) and develop an ECG algorithm to predict its origin. METHOD: We analyzed the ECGs of 100 patients with OTVA who underwent successful ablation. The QRS complex was measured during sinus rhythm and ventricular arrhythmia. After the ECG algorithm was developed, it was validated in an additional 100 patients from two different hospitals. RESULTS: In this retrospective study, among the parameters without restrictions in the transition lead, the V2S/V3R index (AUC = 0.96) was significantly better in predicting ventricular arrhythmia originating from the right ventricular outflow tract (RVOT). Further, the larger initial r wave surface area (ISA) in V1 and V2 (AUC = 0.06) was significantly better in predicting ventricular arrhythmias originating from the left ventricular outflow tract (LVOT). Among the parameters with the transition lead in V3, the V2S/V3R index (AUC = 0.82) was significantly better in predicting VAs originating from the RVOT. On the contrary, the V3 R-wave deflection interval (AUC = 0.19) was significantly better in predicting ventricular arrhythmias originating from the LVOT. The algorithm combining the V2S/V3R index and the larger ISA in V1 and V2 could predict OTVA origin with an accuracy of 95.00%, a sensitivity of 87.18%, a specificity of 100.00%, a positive predictive value (PPV) of 100.00%, and a negative predictive value (NPV) of 92.42%. In the validation study, the algorithm exhibited excellent accuracy (95.00%) and AUC (AUC = 0.95), with a sensitivity of 94.12%, a specificity of 95.45%, a PPV of 91.43%, and an NPV of 96.92%. CONCLUSION: Our developed algorithm can reliably predict OTVA origin without restrictions in the transition lead.


Assuntos
Ablação por Cateter , Taquicardia Ventricular , Complexos Ventriculares Prematuros , Humanos , Taquicardia Ventricular/diagnóstico , Estudos Retrospectivos , Arritmias Cardíacas , Ventrículos do Coração , Eletrocardiografia , Algoritmos , Complexos Ventriculares Prematuros/diagnóstico , Complexos Ventriculares Prematuros/cirurgia
17.
Carcinogenesis ; 44(12): 859-870, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37738681

RESUMO

Ovarian cancer (OC) is one of the most common malignant tumors in women. Circular RNAs (circRNAs) can potentially regulate the development of OC. Therefore, this study investigated the role of circASXL1 in OC progression. Cell functions were assessed by MTT, colony formation, wound healing, and transwell assays. RIP and dual luciferase reporter assays confirmed the relationship between miR-320d and circASXL1 or RACGAP1. MeRIP was utilized to detect m6A levels. Xenograft tumor was established for in vivo experiments. CircASXL1 and RACGAP1 levels were increased in OC tissues and cells, whereas miR-320d expression was decreased. Upregulation of circASXL1 was associated with poor prognosis in OC patients. CircASXL1 silencing suppressed OC cell proliferation, migration and invasion in vitro and in vivo. Mechanistically, METTL3/IGF2BP1-mediated m6A modification maintained circASXL1 stability and upregulated its expression. CircASXL1 was a ceRNA that sequestrated miR-320d from RACGAP1, leading to increased RACGAP1 expression. CircASXL1 promoted OC cell proliferation, migration and invasion via the miR-320d/RACGAP1 axis. Therefore, m6A-modified circASXL1 acts as an oncogene in OC by targeting miR-320d and activating RACGAP1/PI3K/Akt pathway, which provides novel promising biomarkers for OC diagnosis.


Assuntos
Adenina/análogos & derivados , MicroRNAs , Neoplasias Ovarianas , Humanos , Feminino , Fosfatidilinositol 3-Quinases , Neoplasias Ovarianas/genética , Proliferação de Células/genética , MicroRNAs/genética , Linhagem Celular Tumoral , Metiltransferases
18.
Intern Emerg Med ; 18(8): 2321-2332, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37747589

RESUMO

There is no strong evidence that one of the B-line quantification approaches is clinically superior to the others, as the use of lung ultrasound (LUS) protocol becomes more commonplace in the treatment of heart failure (HF). This study, thus, aimed to evaluate to the prognostic value, feasibility, and reproducibility for selecting optimal B-line quantification methods. We enrolled patients with HF admitted to the emergency intensive care unit (EICU) in a single-center, prospective, observational study. LUS were performed before EICU discharge, and six B-line quantification methods were used to calculate scores. A total of 71 patients were enrolled. There was a moderately good discriminative value between six quantification methods and the composite outcome. The calibration curve of six B-line quantification methods for the probability of the composite outcome showed good agreement between prediction and observation. Decision curve presented that six B-line quantification methods presented similar net benefits at the entire range of threshold probabilities. Image interpretation time of Quantitative methods 1 and 2 was significantly less than that of other methods. Intraclass correlation coefficients (ICC) for B-pattern scoring systems (Quantitative methods 1 and 2) between two experts demonstrated the excellent level of clinical significance. Despite the similar discrimination, calibration and clinical usefulness, pattern-B scoring systems have the benefit of the feasibility and reproducibility over other methods.


Assuntos
Insuficiência Cardíaca , Projetos de Pesquisa , Humanos , Prognóstico , Estudos Prospectivos , Reprodutibilidade dos Testes , Estudos de Viabilidade , Ultrassonografia/métodos , Pulmão/diagnóstico por imagem , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/terapia
19.
Front Public Health ; 11: 1184831, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37575113

RESUMO

Background: Cytopenia is a frequent complication among HIV-infected patients who require hospitalization. It can have a negative impact on the treatment outcomes for these patients. However, by leveraging machine learning techniques and electronic medical records, a predictive model can be developed to evaluate the risk of cytopenia during hospitalization in HIV patients. Such a model is crucial for designing a more individualized and evidence-based treatment strategy for HIV patients. Method: The present study was conducted on HIV patients who were admitted to Guangxi Chest Hospital between June 2016 and October 2021. We extracted a total of 66 clinical features from the electronic medical records and employed them to train five machine learning prediction models (artificial neural network [ANN], adaptive boosting [AdaBoost], k-nearest neighbour [KNN] and support vector machine [SVM], decision tree [DT]). The models were tested using 20% of the data. The performance of the models was evaluated using indicators such as the area under the receiver operating characteristic curve (AUC). The best predictive models were interpreted using the shapley additive explanation (SHAP). Result: The ANN models have better predictive power. According to the SHAP interpretation of the ANN model, hypoproteinemia and cancer were the most important predictive features of cytopenia in HIV hospitalized patients. Meanwhile, the lower hemoglobin-to-RDW ratio (HGB/RDW), low-density lipoprotein cholesterol (LDL-C) levels, CD4+ T cell counts, and creatinine clearance (Ccr) levels increase the risk of cytopenia in HIV hospitalized patients. Conclusion: The present study constructed a risk prediction model for cytopenia in HIV patients during hospitalization with machine learning and electronic medical record information. The prediction model is important for the rational management of HIV hospitalized patients and the personalized treatment plan setting.


Assuntos
Registros Eletrônicos de Saúde , Infecções por HIV , Humanos , Infecções por HIV/complicações , China/epidemiologia , Redes Neurais de Computação , Aprendizado de Máquina
20.
Natl Sci Rev ; 10(6): nwad035, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37484834

RESUMO

Mott physics plays a critical role in materials with strong electronic correlations. Mott insulator-to-metal transition can be driven by chemical doping, external pressure, temperature and gate voltage, which is often seen in transition metal oxides with 3d electrons near the Fermi energy (e.g. cuprate superconductor). In 4f-electron systems, however, the insulator-to-metal transition is mostly driven by Kondo hybridization and the Mott physics has rarely been explored in experiments. Here, by combining the angle-resolved photoemission spectroscopy and strongly correlated band structure calculations, we show that an unusual Mott instability exists in YbInCu4 accompanying its mysterious first-order valence transition. This contrasts with the prevalent Kondo picture and demonstrates that YbInCu4 is a unique platform to explore the Mott physics in Kondo lattice systems. Our work provides important insight for the understanding and manipulation of correlated quantum phenomena in the f-electron system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...